Back To Basics Episode 4: Let’s Talk About Resistors

Hi there! Welcome to the fourth episode of Back To Basics, where we explore everything electronics from the beginning.

It is time to start learning about components, and what’s better than beginning with the ubiquitous resistor, a component present in each and every electronic circuit.

We will cover some theory, the math, and the major kind of resistors available on the market. All with a very simple approach that will help you understand what resistors are for, and which one to choose for your own projects and experiments.

Controlling The Flow


Before we get to the components, let’s look at the three ways materials behave electrically.

There are three fundamental kind of materials:

  • conductors,
  • insulators, and
  • resistors

Conductors allow current to flow very easily, like for example in copper wires. They have a high conductivity, which translates in a very low resistance.

Insulators are the opposite of conductors. They block the current flow, like for example with rubber or plastic. They have a very low conductivity, which translates in a very high resistance.

In between these two categories we have the resistors, which are capable of controlling the current flow. They lay in between the conductors and the insulators in terms of conductivity, having very specific values of resistance.

You can view resistance like a water pipe. Conductors are very large water pipes, which offer minimal resistance to the flow of water, here representing the electric current.

Insulators are totally clogged pipes, where the flow of water is totally stopped.

And finally the resistors, which are like water pipe of a specific section, so that they limit the flow of water to specified amounts.

The Fundamental Rule: Ohm’s Law


The math that governs the current flow through a resistor is called Ohm’s Law, and it is the most important concept in electronics.


Here is the formula:

V = I R

where:

V is the voltage, or the entity that forces the current to flow, which is measured in Volt; I is the current, or the flow rate of the charges, which is measured in Ampere; R is the value of the resistance, or the entity that opposes to the flow of current, which is measured in Ohm.

Resistor Calculations: Series And Parallel

Most of the time we need to create circuits with multiple resistances, connected in various ways. Two most common ways of connecting components are the series connection and the parallel connection.In both case, resistors can be replaced with an equivalent resistance.


Here is an example of two resistors, R1 and R2, connected in series. When resistors are connected this way, there is only one path for the current and the equivalent resistance R3 is just the sum of the resistances in series.


And here is an example of two resistors connected in parallel. In such cases, the current splits into multiple paths when it enters the parallel, and it regroups when it leaves the parallel. The equivalent resistance is the reciprocal of the sum of the individual reciprocal resistances.

Note the simplified formula on the right, only valid in the case of only two resistances in parallel.


You can see that when resistors are in series, the total resistance increases, while when the resistors are in parallel, the total resistance is smaller that the smaller resistor in the parallel connection.

Practical Example

Let’s put this information into practice.

Let’s say we have a 9V battery, a resistor, and a LED. Knowing that the current that must flow through the LED is 20mA, and that the voltage at the LED is 2V, what’s value of resistor we have to put in series to the LED to limit the current to the 20mA value?

Since the three components are all in series, the current will be the same through all of them. Since we want a 20mA current through the LED, then also the resistor will be traversed by a current of 20mA. Additionally, the volt at the resistor is given by the difference between the voltage value on the left and the one on the right. The voltage on the left is the battery voltage. The voltage on the right is the voltage required by LED, which is 2V.

Using Ohm’s law, we can therefore write:


So, in practice, if we want to power an LED using a voltage source of 9V, we need to put a resistor in series with a value of 350 Ohm.

Physical Components: Types Of Resistors


Let’s now take a look at the kind of resistors we can find on the market and how they are made.

We have two main categories based on the physical aspect of the resistors:

  • through hole resistors, or THT resistors, usually in the shape of a cylinder with two wires coming out of them, and
  • surface mounted resistors, or SMT (or SMD) resistors, usually in a cubic and small shape.


We can also categorize resistors as fixed or variable. All fixed resistors can be either THT of SMD resistors. The variable resistors can be mechanically variable, thermally variable, or electromagnetically variable.


A typical example of mechanically variable resistors are the potentiometers, which usually have three terminals, the usual two at their two ends, and a third one, connected to a sliding connector touching the resistive material between the two ends. Measuring between one of the two end terminals and the slider, we can obtain all the resistance values between zero and the nominal value of the potentiometer.


Thermally variable resistors are usually called thermistors. They have two leads, and their resistance value changes with the temperature.


An example of electromagnetically variable resistor is the photo-resistor, a resistor that changes its resistance with the intensity of the light.


The resistance value of resistors can be imprinted on the resistor itself in two different ways, depending on the kind of resistor. It can be just printed using only numbers, the last of which always represents the number of zeros following the other numbers. Or it can be printed using numbers and the letter R, which represents the decimal point. Or it can be imprinted in the form of colored bands.


Here are a few of examples of number representations:


And here is an example with numbers with a decimal point:

When using colors, instead, we can have from a minimum of 3 bands, to a maximum of 6.

Here is the decoding chart to interpret the resistance value, the tolerance and, eventually, other information. You can find similar charts with a simple google search.


One last classification of resistors is based on the material used to make them. We can have:

  • carbon film resistors, made depositing a thin layer of carbon, usually graphite, on a ceramic or paper substrate
  • metal film resistors, made of a thin layer of metal deposited on a cylindrical support


The final, but not the least important, specification about resistors is their power dissipation capability or power rating. The power rating depends on the type of material they are made and the type of material of their support, as well as their size and the presence of a aluminum heat sink. the numbers can vary from 1/8W, going to 1/4W, 1/2W, 1W, and so forth, up to the hundreds of Watt.


When calculating the value of a resistor, never forget to calculate also the power it will need to dissipate, and always choose a resistor that can dissipate at least that amount of power.

For example, let’s get back to our example of resistor limiting the current in a LED. To calculate the power dissipation, we can use either one of these formulas:


n our example, we know the value of the resistor and the current that flows through it, so we can write:


Therefore we can use a resistor capable of dissipating 1/8W, equal to 0.25W, since its rating is greater than the actual dissipated power.


Don’t forget: always use a resistor with a rating higher than the calculated power, or the component may burn or even explode.

Conclusion


Well, now you know the theory behind resistance, how to use Ohm’s Law, how to calculate series and parallel equivalents, and how to physically identify the component you need.


In the next episode, we will dive deeper into the Kirchhoff’s Laws, which build on top of everything we covered today.

Happy experiments!!!

Lights On! (part 2)


Hi there!
It is summer, and I have a number of upgrades in mind for my outdoor living areas: some involving electric upgrades, some involving gardening, some involving landscaping.
One thing I have in mind involves the night illumination of the gazebo and its surroundings. The current illumination is based on low power LED strings, powered by batteries recharged during the day by small solar panels.

However, I found that this kind of illumination has a lot of drawbacks. First of all, the lights are very dim. They are just fine when entertaining guests having conversations while enjoining the freshness of the evening air. But when it comes the time to do some table game that requires being able to look at pictures or reading stuff, often we end up going inside where we can have more light.
In addition, I need to turn on and off the lights manually, whenever I need them. If I leave them always on and let their sensors take care of the switching, they end up using the whole battery by the middle of the night and, sometimes, they take so long to recharge that by the time it is evening they don’t last that much anymore.
The solution would be to use bigger solar panes, but the batteries are still small and they also need their time to recharge. If I let them recharge too fast, they will start loosing their capability of retaining the charge too soon, and I would have to replace them relatively often. So I would trade off the usage of solar panels with more waste in exhausted batteries.

The right thigh to do, in my view, is therefore to use regular 120V lamps, obviously low power LED, but brighter than the ones I currently have. The thing is that I do like the automatism of having them turn on and off automatically from dusk to dawn. So, I thought I could design and build my own dusk to down automatic switch, which actually require just very few component and it is very cheap to make.

Schematic


Above is the schematic of my dusk-dawn automatic switch. It is a very standard design, and it requires just a few components.
The load is basically made of the LED lamps we want to control.
The 120Vac input goes directly through a protection fuse and to the series of a 50K resistor and a photo-resistor which is the sensor that will detect the daylight condition to turn the light bulbs on and off.

When there is enough daylight, the resistance of the photo-resistor is very low, in the range between 1K and 4K. When we are getting closer to dusk, the daylight starts dimming and the resistance instead increases. Once the resistance hits the 16K threshold, the voltage at its leads goes above 30Vac.

It is at this point that the DIAC starts conducting and it triggers the TRIAC. The TRIAC, in turn, will let the current flow through the load, thus turning on the lights.
Very simple right?

The Turbidity Tester

Plastic and other garbage in the waters has become a real issue in recent times. To make a difference in the effort of keeping clean the world in which we all live, thousands of YouTube creators have teamed up, lead by Mr. Beast and Mark Rober, to create the #teamseas global campaign, with the goal to raise $30M by the end of this year 2021 to remove from the waters of rivers, seas, and oceans all over the world, an amount of 30M pound of plastic and other garbage. One pound for every dollar.

To do so, #teamseas is partnering with the non-profit charities Ocean Conservancy and The Ocean Cleanup. They pledged to remove the 1 pound of plastic from seas and rivers for every dollar we will collect through the #teamseas effort.

To increase the awareness on this issue, today today I present you a device that can give you an idea of how many pollutants are contained in a sample of water. A corresponding video is also available here.

Here is the schematic of the device, which I named Turbidity Tester.

The sensor that measures the particles dispersed into the water is made of an LED and a photoresistor, on the bottom left.

The photoresistor I used is more sensitive to the green light, and so I used a green LED to make the circuit work at its best.

When the LED shines its light directly on to the photoresistor, the resistance will drop to a minimum, causing the voltage at the non-inverting input of the op-amp to reach a very low value.

When the LED shines its light through a sample of water, the more the water is polluted, the less light will hit the photoresistor and, therefore, the more its resistance will increase, which will cause the voltage at the non-inverting input to raise. The more pollution, the more voltage.

The op-amp is connected in a non-inverting amplifier configuration, and the gain of such amplifier depends on the resistors R3 and R4, which I selected in such a way that I can have on the output of the op-amp a voltage in the range between 0.3 and 8 V.

This voltage is applied to the input of the LM3915, which is a bar graph VU meter driver, configured through the resistors R1 and R2 to work exactly within the same range of 0.3 and 8V.

This way, the VU meter will light up one of the LEDs depending on the amount of pollutants in the water sample.

For the VU meter, I used LEDs of different colors: a blue one for clean water, then green, for less that clean , than orange for dirty water and red for really bad water.

To be able to put a water sample between the LED and the photo resistor, I 3D printed this simple device.

The LED is inserted in one of the side holes, and the photo resistor on the other one, so they will face each other.

The big hole on the top is made of a size that fits perfectly a tic-tac candy container, which will hold the water sample. But of course, if you want to try this project, you can use any kind of transparent container. Just adapt the size of the chamber to fit it snugly.

So, to test some water, we fill the container, we insert it in this sort of chamber, then we power up the circuit, and we take our reading on the VU meter.

This of course is not a device that can take actual measurements of the quantity of pollution in the water, but is an example on how such measurements can be done. Using more sophisticated photo-resistors that can detect different light wavelengths, we could build, using the same principle, a spectro-photometer, and we could tune it up to have precise numerical readings for each frequency. This would enable us to determine not only the presence of pollutants, but also their chemical composition and their quantity.

And talking about pollutants, don’t forget that you can help making Earth a better place to live in by donating to the #teamseas campaign.

Once again, #teamseas is a global campaign to raise $30 M to remove 30 M pound of plastic and trash from our oceans, rivers and beaches. It’s also the second wave of the largest creator-led fundraising campaign to ever hit the internet: #teamtrees. We launched #teamtrees in 2019 with a goal of raising $20M to plant 20M trees and we smashed it, raising over $23M and generating more than 1B video views. Even after two years, teamtrees.org is still receiving donations for planting 2600 trees every day.

#teamseas has partnered up with Ocean Conservancy and The Ocean Cleanup. All donations to teamseas will be split by the two charities 50/50.

Let’s repeat together the success we made back in 2019. Let’s help the world where we live to flourish again.

And finally, here is the archive with all the files for this project:

Happy Experiments!