Behind The Scenes Of The Theremin Design

How I design my electronic circuits and prepare the videos to show them to you.

20180915_153351

Did you ever ask yourself where I get the schematics of the Theremin circuits and other gadgets that I present on my YouTube videos? The answer is simple: I do some research on books, on specialized magazines and on the Internet. I see solutions created by other people, if any, and then I think about what would better work for my case. Sometimes it ends up to be a modification of something that somebody else did, maybe for a totally different purpose. Sometimes, I just use the general idea to create something different, new, my own design that is more appropriate for my needs.

20181213_105525

Either way, I usually build a number of prototypes of what I need, then I take some measurements in lab, then I start making further modifications to my original design, until I obtain exactly what I am looking for.

20181213_105610

Also, more often than not, I figure that the circuit I am testing is too sensitive to certain parameters of the circuit itself. Maybe is a capacitor which value needs to be adjusted a little bit, or a connection between two or more components that causes issues because of capacitive or inductive coupling with other components. That is when I try to change my design to reduce such sensitivities, so that the circuit can be assembled by anyone with the exact same results as mine. And this is what is called engineerization, or adjusting the design for mass production.

20180915_153412

And sometimes, to do so, it is not enough to test the single circuit. Instead, I need to connect the circuit with other pieces that have to work together with it, and see if further unwanted interactions happen, so that I can eliminate them or, at least, reduce them so that they become negligible.

20180915_153256

Sometimes this process goes fast, sometimes takes a long time. And that’s why my videos are not published at fixed intervals. Unfortunately, since this is done only as a hobby, I don’t always have enough time to dedicate to my project, so days go by until, finally, I am done. Then I finalize my schematics, I build the last prototype and the final product and, in the process, I also record all these activities so I can end up making a video out of them.

20180915_153313

Then the video editing process starts and, once the video is finally ready, I release it on YouTube for you to watch it.

One day I will be able to do this full time. Who knows, maybe when I retire. Or, maybe, if you all give me a hand, this could become my new full time job (donations, donations, donations). We’ll see.

Thank you for reading this article. And, as usual, happy experiments!

An LED Bar Graph VU Meter

VUmeter

Bar graphs VU meters can be easily made with a simple integrated circuit. There are several of them with different characteristics, but they all present the same basic functionality: one or more LED in a row are used to visualize, more or less precisely, the voltage amplitude presented to the input. That voltage can be either a direct current or an alternate current and, in particular, it could be the output of an audio amplifier.

But, what is inside these integrated circuits? How do they make possible this kind of behavior?

Here is the design of a simple gadget that shows how a bar graph VU meter works. Building and using this device is certainly a fun way to learn the principles used to design the bar graph integrated circuits.

bar_graph_vu_meter

The basic element of the circuit is the one made with the components Q1, R1, R10, D1, and D10.

This block of components then replicates several times to increase the number of LEDs used in the bar graph. In this particular case, the same circuit is replicated 8 more times, for a total of 9 LEDs in the bar.

You can also see that each block, or stage, receives as the input the output from the previous stage.

Diodes form D10 to D17 are used to provide a different threshold to each stage. In fact, let’s say that the first stage is triggered when the voltage on the anode of D10 reaches about 3V. In order to trigger the second stage we will need 3V on that stage, but that means that the voltage at the first stage has to go up to 3+0.6V, or 3.6V. The extra 0.6V is the forward voltage of diode D10.

Similarly, to reach each further stage, we will need an input voltage 0.6V higher for each stage we want to light up.

In the end, to light up the last stage we will need an input voltage of at least 3 + 8 times 0.6V, or 7.8 volts.

Once the threshold is reached in a stage, the corresponding transistor switches on and starts conducting a current that is only limited by the LED and the series resistor which, in this case, is 330 ohms. With the values in the circuit, the LED current will be about 20 mA.

So, when we apply a voltage to the input terminals, depending how high the voltage is we will see a number of consecutive LEDs lighting up, while the remaining will stay off because their respective stages have not been triggered yet or, in other words, the voltage at those stages hasn’t yet reached the threshold imposed by the diodes.

Note also that resistors R10 to R18 are not all of the same value. This is because by the time the voltage reaches the threshold in the last stage with transistor Q9, the voltage on the previous transistors is higher and higher while we move to the left of the circuit, since we need to add back the 0.6V that the diodes are dropping. Therefore, to avoid damage to the transistors on the left, we need to increase the base resistor when moving from the right to the left of the circuit.

Another thing to notice is the trimpot located at the connectors for the input signal. The circuit as it is, is capable of handling signals up to the value of the power supply, which is 9V.

However, we can adjust the trimpot to handle higher signals, just by moving the trimpot cursor toward the end that is connected to ground, in order to get only a fraction of the actual input signal.

Conversely, if you had a very small input signal, that could not trigger even the first stage of this circuit. In that case, you could still add a very simple amplifier between the source of the signal and the input of this circuit, which would help increase the level of the signal to the required value.

Finally, you see that the bar graph meter is powered with a 9V power supply. I used such value so you can use a 9V battery, if you like to try the circuit.

However, if you wanted to use this circuit as part of a more complex system having a higher value of the power supply, you could just modify resistors from R1 to R9 and use the power supply of that system.

For example, if you planned to use 12V instead of 9, you would use resistors of 470 ohm rather than 330, and everything would work just fine.

Remember, however, that 9V is the minimum voltage you can use to correctly power the bar graph circuit. You can only increase the power supply voltage to a higher value and increase accordingly the resistors R1 to R9. That is because we need a power supply that exceeds the voltage at the base of the leftmost transistor Q1, which can be as high as 7.8 volts, as we said before.

The circuit can be easily assembled on a per-board, like in the case in the frnt picture of this post. There, I used a 3 prongs connector to provide the power supply and the input for the external signal.

Once the circuit is assembled, set the trimpot with the cursor toward the ground side, then power up the device and put a signal to its input. The signal should be the highest possible with the amplifier to which you are attaching the VU meter. Then, adjust the trimpot until all the LEDs are lighted up. Now the circuit is tuned and you can input to it any signal that changes between 0V and the max you used for the tuning.

For further information, and to see the VU meter in action, take a look at this video that I posted on my YouTube channel.

Happy experiments!!!

Another Theremin Post

Announcing the new video on the design, implementation and testing of the power supply module of the Theremin.

You can find the video at this link.

Also, refer to the link on the right column about the Theremin project to find all the files so far published on the construction of this unusual electronic musical instrument (schematics, 3D designs, work art).

And, finally, don’t forget to look also at the other videos on my YouTube channel.

 

DC Electronic Loads

An electronic load to test DC power supply devices up to 100W.

What do you use when you have to test a new power supply that you just built, or one that you bought and want to know if the declared specs are true?

One thing you’ll need is a passive load that you attach to the power supply output to drain a certain amount of current, both to verify that the power supply is capable of providing that amount of current, and to verify the amount of ripple that was not filtered away by the power supply itself.

rheostatA classic method for doing so is to use a rheostat, which is essentially a potentiometer capable of dissipating the amount of power produced by the power supply. The resistance of the rheostat can be changed and therefore different amount of currents can be used to test the power supply. However, rheostats are big, heavy and cumbersome.

An alternative to rheostats is to have a so-called Electronic Load. These are electronic circuits that are capable to emulate the functionality of a rheostat.

I’m proposing here two simple versions of an Electronic Load, functioning in DC, and capable of dissipating up to 100W, all of this in a very condensed space, and very light in weight.

The first version is a very simplistic one.

100W_el_load_v1

It uses a cascade of three transistors, in a configuration called Darlington. This configuration is effectively equivalent to a single transistor with a gain (hfe) that is the product of the gain of all the transistors in the configuration. This allows for a very little control current flowing into the potentiometer used to regulate the base current, and for a high current available between the collector and the emitter of the transistor Q3, in the above schematics.

This circuit does not need its own power supply, since it gets what it needs directly from the power supply under test. The resistor R1 is calculated based on the highest voltage that the circuit will be able to handle, in this case 50V. It is important to note, however, that using this load at lower voltages will prevent the possibility to use the full excursion of the potentiometer, thus limiting the sensitivity of the circuit for the control of the current.

The next circuit eliminates the sensitivity problem by providing it own power supply to control the base current of the Darlington, thus eliminating the dependency from the external power supply voltage.

100W_el_load_v2

In fact, in this case, the base current can be adjusted with the potentiometer RV1, which is polarized through the resistor R1 and the trimpot TR1, which can be adjusted to maximize the useful range of motion of the potentiometer, regardless of the voltage applied at the input terminals. This way the electronic load can have the same sensitivity for any input voltage. A digital Volt/Am-meter, powered by the same internal battery, provides a visualization of the voltage of the system under test and the current being drained from it.

I will soon publish a video on my YouTube channel that shows the Electronic Load I built for myself. Please watch for that video to come out. And, in the mean time, can you think which one of the above schematics I used? Did I use the simple one, because less expensive? O did I sacrifice a few extra bucks to gain more sensitivity on the regulation of the load?

I strongly suggest to subscribe for free to my YouTube channel, and also to click on the bell icon that appears after the subscription is done. This will allow you to automatically receive an e-mail whenever I publish a new video. This way you won’t have to go periodically to my channel to check for new posts.

Happy Experiments!

Theremin Part 1: Block Diagram

Presenting the block diagram of the Theremin we are going to build in this series.

theremin_block_diagram

The Theremin is one of those devices that was created by chance, while looking for something completely different.

Leon Theremin, which was studying the design of the early proximity detectors for the Russian government, discovered that his invention could be adapted and used for a totally different scope. The Etherphone was born.

Later on, once the instrument became well known and was produced under several different names by RCA first and other brand names later, it became commonly known under the name of its inventor, Theremin himself.

The concept of the Theremin is today easily understood as a device that uses the beat between two very close high frequencies to produce an audible frequency.

There are several ways to implement the device, although they are all variations of the same base design used by Leon. Since I wanted to create my own version of it, and since I wanted it to be a real musical instrument, I did some research and came up with my own version of the Theremin schematics. In doing so, I put together an instrument with the same features as the original Etherphone, along with enhancements that can be found in today’s commercial versions.

I present today the block diagram of my version of the Theremin. In future articles I will dive into the details of each of the blocks and how they can be practically built, also with the aid of videos that I will publish on my YouTube channel.

Starting at the center left, there is a reference oscillator for the pitch. The frequency is adjustable in a narrow range to allow the tuning of the instrument, which is heavily dependent on the physical features of the person that plays it (more on that, later).

On the top left, you can see a second oscillator. The frequency of it can be modified by the distance of the player’s hand from the pitch antenna. The player’s hand and the antenna are capacitively coupled. Changing the distance of the hand from the antenna, changes the capacity, thus changing the oscillation frequency. Since the capacity is affected also by the size of the hand, the humidity of the air, the distance of the antenna from the body of the musician, and several other factors, the reference oscillator frequency needs to be adjusted before being able to play the instrument, to make sure that the range of notes generated by the Theremin is within the optimal range for the music that will be played.

The output of the pitch reference oscillator and the variable oscillator are mixed together in the box labeled “mixer”.  In there, the two frequencies beat and produce two more frequencies, one being the sum of the two, and the other one being the difference. The mixer output these signals after passing them through a low-pass filter, which eliminates the higher frequency, leaving only  the lower one, which is the difference of the frequencies of the two oscillators. When the signals from the two oscillators have a close frequency, the produced difference beat becomes an audible frequency, the music generated by the Theremin.

The output of the mixer is split and given as input to two more blocks. Let’s examine first the one labeled VCA. This is, in fact, a voltage controlled amplifier, which is capable of changing the volume of the signal coming from the mixer. The voltage used to control it, comes from another high frequency circuitry, the “volume variable oscillator” and the “volume resonant circuit”.

The volume oscillator is another oscillator which frequency is controlled by another antenna. The output of this oscillator is entered in the volume resonant circuit. Like with the pitch reference oscillator, also the volume variable oscillator can be tuned to the physical features of the musician playing the instrument.

The volume resonant circuit is a device that receives in input a signal at a high frequency and outputs a DC voltage which amplitude depends on how far the input frequency is from the resonance value of the resonator inside this block. So, changing the distance of the hand from the volume antenna changes the frequency of the volume oscillator, which in turn, changes the DC output of the volume resonant circuit. The output of this circuit is used to control the amplification level of the VCA, allowing for the VCA to block completely the signal from the mixer (mute) to letting it pass completely (max volume).

The output of the VCA is then passed to an audio pre-amp, which can adjust the volume and the brightness of the sound. Then the signal goes to a power amplifier that pilots the speaker embedded in the Theremin. The pre-amp output could also be sent to an external power amplifier. I will also provide this capability to my Theremin.

Given the difficulty to emit the correct pitch while playing the Theremin, I provided the instrument with a preview output, that can be used to pilot an ear-piece. The player will be able to hear the note about to be emitted, even if the VCA is muting the Theremin. This is the reason for the last couple of blocks in the diagram.

The signal from the mixer, besides going to the VCA, is also sent to another pre-amp, which will allow to adjust the preview volume.

Then, from the pre-amp, the signal goes to a second amplifier that pilots the ear-piece. Since the path to the ear-piece is not affected by the VCA, the player can always hear the note about to be played, regardless of the volume to which the VCA is currently set. This becomes very useful when the Theremin music needs to come along with other instruments that are already playing. The musician playing the Theremin, can prepare the first note that will be played by the Theremin, adjusting it to the one of the other instruments being played.

Well, that’s it for now. But don’t you worry: it is much more complicated to explain how the Theremin works than actually building one. In the next blogs of this series we will go inside the blocks one by one, we will build them, and we will put the whole Theremin together before you even realize it. It will be a lot of fun.

‘Till the next time…

(See also the YouTube video that complements the explanation of the block diagram provided here: https://www.youtube.com/watch?v=moT9iAaZU-I)

Looking At The Future

An overview of the next subjects I will explore in my blog and my YouTube channel.

spatiul-cosmic

No, not the future of the human race! Not even the future of the space exploration!

I’m just talking about my plans for future posts on this blog and on my YouTube channel.

I observed that people tend to look mostly at short videos and, when they are too long, watchers soon give up. I attribute this to the fact that people watches YouTube videos in a different way than TV shows and, while TV shows may be long, that is not true for the majority of videos on YouTube. The expectations are just different.

So, rather than proposing long videos that exhaust a subject in all its details, and just gliding over it, it is probably better to have short videos that concentrate on a single detail of the subject. Then I could have several episodes on the same subject, each concentrating on a different detail and made in such a way that someone could watch a specific episode without the need to watch all the previous ones..

Looking back at the resistors video, it could have probably worked better if I had split the video in several pieces, one with the general information, one just for resistors in series, one for resistors in parallel, and so forth.

I could basically have several episodes on different aspects of the same subject!

Based on this assumption, I will publish in the next few weeks several episodes centered on two primary subjects: the capacitor and the inductor, to complete the overview of all the passive components used in electronics. And, maybe, in a later future, I could also provide a number of videos where I show how these components can be used together, and what kind of circuits can be created.

Please let me know what you think of this new setup of my channel by writing a comment. Should I just keep going the way I started? Or should I move on with shorter videos, centered on specific details of a subject? Would this help those people that are only interested in specific details and don’t want to listen to the whole spiel?

Before I go, I would like to finish by introducing a new subject that is very dear to me: I plan to build a functioning Theremin for myself (I play musical instruments as a hobby). It is going to be a complex project, so it wll take some time, but I plan to upload several videos on the progresses I make, until the project is completed. I will also publish the whole design of the instrument, so brave followers can try to build one for themselves too. And, maybe, I could also upload my own performance with the instrument, once completed, playing just some simple tune. Anyone interested?

theremin_in_concert

‘Till the next time…

(Watch also the video on YouTube:  https://www.youtube.com/watch?v=jXCCT2xIWcA&feature=share)

How Resistors Work

resistors_series

What is a resistor? Why would I want to use it? Where can I find it?

I’m sure you have asked these questions and many others to yourself several times. Here, I hope to give you at least some of the answers. But keep in mind that there is much more behind this and I could keep writing pages and pages on the subject barely scratching the surface of it.

So, why am I doing this? Because, for the most part, the information I will provide here are enough for day to day use of the resistors in simple electronic circuits used to for learning and for early experimentation. If you need to know more, then you are already on the road for becoming a true electric or electronic engineer.

A resistor is an electric device which only reason to exist is to reduce the flow of the current in a circuit. It obtains this effect by dissipating the extra energy of the current into heat. Yes, heat! There was never in the engineering history a device that wasted more energy than a resistor (percent wise). But then you’d ask: why in the world we want to use it? Because, used in the appropriate way, it allows us to do a lot of things that wouldn’t otherwise be possible. Just think at this: there is no electronic circuit in the world that does not use resistors.

Here is how resistors look like:

resistors

Back in 1827, a German physicist and mathematician named Georg Ohm, published a paper containing what it was later called Ohm’s law. It was basically a formula that correlated the current that flows in a wire with the voltage applied at its extremities. He found that increasing the voltage, the current also increased of a proportional amount, and he called the proportional constant “resistance”. The formula of the resistance was born (although he did not write it exactly this way):

V = I x R

A resistor, therefore, is fundamentally a piece of conductor that presents a certain resistance to the flow of the current. When we apply a voltage V at the ends of the conductor, an electric current I will flow, proportional to the amount of voltage by the constant R, the resistance of the conductor. In the SI system, the resistance is measured in Ohms, to honor the discoverer of the law, while the voltage is measured in Volts and the current in Amperes.

Today, resistors are made of different materials. These materials are substantially a mix of a good conductor and an insulator (a material that blocks the flow of current). Adjusting the mix of the two substances, it is possible to create resistors having a wide range of possible resistances, from tens to millions of an ohm.

There are two symbols that are normally used in schematics to represent a resistor. The most common in USA is the one with a zig-zag shape; the other is the one specified by the IEC (International Electrotechnical Commission):

resistor_notation

Let’s now talk about how resistors can be connected to each other to accomplish some simple tasks.

The first way to connect together two or more resistors is to put them in series. Two or more resistors are said to be connected in series if the same current I flows through all of them:

resistors_series

The voltage E applied to the whole circuit is split among all the resistors and the sum of all the resistor voltages equals the voltage E:

E = V1 + V2 + V3

while the total current in the circuit is:

I = V1/R1 = V2/R2 = V3/R3 = E/Req

Req is the equivalent resistance of the series:

Req = R1 + R2 + R3

resistor_equivalent

A series of resistors is normally used as a voltage divider like, for example, those that are used to polarize transistors, or other electronic components. Another usage example is to reduce the input voltage coming into a device, to bring it to a value more consistent to what the device needs. An example of that is the input of an amplifier that accepts a voltage no greater than 1V as its input. If the source of the signal that goes into the amplifier has a greater voltage, a couple of resistors in series can do the trick of lowering the voltage to a more adequate value.

Another way to connect resistors is to put them in parallel. Two or more resistors are said to be connected in parallel if the same voltage E is applied to all of them:

resistors_parallel.png

The current I that flows from the generator is split among the different resistors and the sum of all the resistor currents equal the current from the generator:

I = I1 + I2 + I3

The voltage in the circuit can be expressed by the following equation:

E = R1 * I1 = R2 * I2 = R3 * I3 = Req * I

Req is the equivalent resistance of the parallel:

1/Req = 1/R1 + 1/R2 + 1/R3

resistir_parall_equiv

Resistors in parallel have several uses, but the first two that come to my mind as the most usual are:

  1. You need a resistor of a particular value that is not available in the market. To solve the problem, you build the resistor with the value you need by putting in parallel two or more resistors of higher value, such that the Req equals the value of resistance that you need.
  2. You can view at all the devises and lamp that you plug in your house receptacles as resistors. All of them are connected in parallel, so each one of them can receive the same voltage regardless of how much current they need.

And, since we were talking about lamps, let’s also talk about power. We have said that the main function of a resistor is to restrict the flow of current by converting the excess power into heat. However, while we do so, we also need to avoid that a resistor becomes too hot, thus damaging its surroundings on the circuit board and maybe even catching on fire.

For this reason, each resistor has a power rating. The power rating the is the max amount of power that the resistor can dissipate without becoming hot enough to cause damage to itself or its surroundings. Normal ratings for resistors that are used in electronic circuit are 1/8, 1/4, 1/2, and 1 W

W is the symbol used in electrical engineering to identify the unit to measure the power, which is called Watt. And yes, that is the same power unit used for mechanics and for thermodynamics, if you were wondering.

The power dissipated by a resistor depends on the voltage applied to the resistor and the current that goes through it:

P = V * I = R * I2= V2 / R

When designing a circuit, you always have to make sure that you determine the max power that each resistor will dissipate, so you can specify the power rating of the resistors along with their value in Ohms.

Another thing that is worth mentioning is that resistors have also a voltage rating. However, even resistors with very low power rating, like 1/8W, have voltage ratings of at least 200V. Will you ever build an electronic circuit that is powered with such amounts of voltage? Probably not, that’s why you don’t usually have to worry about that. And, in fact, how many times have you heard somebody talking about voltage rating of resistors? Maybe never?

One last thing I would like to talk about is how to identify the value of a resistor. Resistors normally  used in electronic circuits are of two kinds:

  • through hole resistors
  • SMT resistors (Surface Mount Technology)

The value of the SMT resistors is always written in clear, with numbers and letters, for example 1k2, which means 1.2 kΩ (that is kilo Ohms).

The value of the “through hole” resistors is instead normally identified by a number of color bands painted on the resistor itself. Each color represents a digit in the value of the resistor, or a multiplier, depending on the position. The last colored band represents the tolerance, which tells you how precise is the value of the resistor itself.

Here is a table that shows you the color codes and the meaning of each color in relation with the position on the body of the resistor.

resistors_color_code

‘Till the next time…

(Watch also the video on YouTube:  https://www.youtube.com/watch?v=jV5nacrzsBw)