A resistor is a component made out of a poor conducting material, so that it can offer a resistance to the flow of the current.
You can think to resistance in terms of the obstacles that charges encounter when moving from one end to the other of a conductor. The more obstacles, the higher the resistance. In a metallic wire, for example, the charges are the electrons of the conduction band (see this post and this other one for further details).
In today’s post I would like to address an issue that sometimes is underestimated when designing an electronic circuit: how to choose the right resistor for the job.
Resistors are not all the same. Besides the resistance value that distinguishes one from the other, there are other factors that are important as well.
Here is a list of all the important factors, why they are important, and what are the consequences of not choosing a resistor based on each specific factor.
- The first thing that comes to mind is the tolerance, which is usually provided on the body of the resistor itself, along with its resistance value.
In color coded resistors, the tolerance is defined by the band that is far away from all the others. In the above picture, for example, it is the gold band, which means that the tolerance is of 5%. In other resistors, where the resistance is explicitly written on the body of the resistor, the tolerance is usually written in clear along with the resistance. More in general, you’ll have to refer to the data sheet provided by the constructor to figure out its tolerance.
Tolerance is an important factor for those circuits that require very precise resistors, like measuring instruments and the like. It is also important when the resistor is used for the polarization of a critical component. If the resistors used in the project have a tolerance that is too high, the whole circuit may not function properly because the actual value of the resistor is too different from the one that was required.
- Operating Temperature. This depends both from the ambient conditions and by the temperature raise produced by the power dissipation. There are two reasons to keep the temperature range into account. First, resistors slightly change their resistance with the change of the temperature. Using the resistor outside its temperature range would cause a variation greater than the one considered by the tolerance. Second, but not last, when the resistor is traversed by current it heats up. As long as the current stays within a range for which the power dissipation is not exceeded, everything is fine. Otherwise, the resistor can easily overheat and burn.
- Maximum Voltage. Operating a resistor above its maximum voltage rating may cause sparks that would destroy the resistor.
Resistors used in low power circuits usually have a maximum voltage in the order of at least 100V, and that’s why people usually don’t care or it doesn’t even know that there is such a parameter. In fact, low voltage circuits will normally never exceed the maximum voltage of any resistor. However, there are specific applications where voltages in the circuits can be above the 100V threshold. In such cases, it is important to verify that the resistors used in the circuit can withstand those voltages.
- Temperature coefficient. This is the parameter that tells us how much the resistance changes per degree Celsius. It depends on the material the resistor is made of, but also on the heat dissipation capability of the component. Some resistors are built with an embedded heat sink to reduce the value of this factor.
This information becomes important in those cases where it is known that the resistor is going to dissipate a considerable amount of power. Based on that, it is possible to figure out if the resistor needs an external heat sink and, eventually, the heat sink thermal resistance.
- Parasitic Capacitance and Inductance. A real resistor does not have only a resistance but also a very low value of capacity and inductance that may affect its functionality at high frequencies.
These parasitic capacitance and inductance are caused by the physical dimensions and shape of the component and cannot be avoided. When working at high frequencies, these values need to be taken into account, since they will generate both capacitive and inductive reactance that will affect the value of the resistor at the particular frequency it is going to be used.
- Packaging. This keeps into account where and how the resistor is going to be mounted. It can be a through holes resistor, which is provided with two leads to make the connections. The leads are usually inserted in the holes of a perforated board or of a Printed Circuit Board (PCB). Or, the resistor can be a Surface Mounted one. This has no wires, just two pads that can be directly soldered on a Surface Mounted technology (SMT) PCB. Other factors affecting the packaging include the possibility of attaching it to an external heat sink, and/or the necessity to properly ventilate it, to guarantee enough heat dissipation.