How To Choose A Resistor

How do we choose the right resistor when designing and building an electronic circuit? Here are the major parameters that should be kept into account.

A resistor is a component made out of a poor conducting material, so that it can offer a resistance to the flow of the current.

You can think to resistance in terms of the obstacles that charges encounter when moving from one end to the other of a conductor. The more obstacles, the higher the resistance. In a metallic wire, for example, the charges are the electrons of the conduction band (see this post and this other one for further details).

In today’s post I would like to address an issue that sometimes is underestimated when designing an electronic circuit: how to choose the right resistor for the job.

Resistors are not all the same. Besides the resistance value that distinguishes one from the other, there are other factors that are important as well.

Here is a list of all the important factors, why they are important, and what are the consequences of not choosing a resistor based on each specific factor.

• The first thing that comes to mind is the tolerance, which is usually provided on the body of the resistor itself, along with its resistance value.

In color coded resistors, the tolerance is defined by the band that is far away from all the others. In the above picture, for example, it is the gold band, which means that the tolerance is of 5%. In other resistors, where the resistance is explicitly written on the body of the resistor, the tolerance is usually written in clear along with the resistance. More in general, you’ll have to refer to the data sheet provided by the constructor to figure out its tolerance.
Tolerance is an important factor for those circuits that require very precise resistors, like measuring instruments and the like. It is also important when the resistor is used for the polarization of a critical component. If the resistors used in the project have a tolerance that is too high, the whole circuit may not function properly because the actual value of the resistor is too different from the one that was required.

• Operating Temperature. This depends both from the ambient conditions and by the temperature raise produced by the power dissipation. There are two reasons to keep the temperature range into account. First, resistors slightly change their resistance with the change of the temperature. Using the resistor outside its temperature range would cause a variation greater than the one considered by the tolerance. Second, but not last, when the resistor is traversed by current it heats up. As long as the current stays within a range for which the power dissipation is not exceeded, everything is fine. Otherwise, the resistor can easily overheat and burn.

• Maximum Voltage. Operating a resistor above its maximum voltage rating may cause sparks that would destroy the resistor.

Resistors used in low power circuits usually have a maximum voltage in the order of at least 100V, and that’s why people usually don’t care or it doesn’t even know that there is such a parameter. In fact, low voltage circuits will normally never exceed the maximum voltage of any resistor. However, there are specific applications where voltages in the circuits can be above the 100V threshold. In such cases, it is important to verify that the resistors used in the circuit can withstand those voltages.

• Temperature coefficient. This is the parameter that tells us how much the resistance changes per degree Celsius. It depends on the material the resistor is made of, but also on the heat dissipation capability of the component. Some resistors are built with an embedded heat sink to reduce the value of this factor.

This information becomes important in those cases where it is known that the resistor is going to dissipate a considerable amount of power. Based on that, it is possible to figure out if the resistor needs an external heat sink and, eventually, the heat sink thermal resistance.

• Parasitic Capacitance and Inductance. A real resistor does not have only a resistance but also a very low value of capacity and inductance that may affect its functionality at high frequencies.

These parasitic capacitance and inductance are caused by the physical dimensions and shape of the component and cannot be avoided. When working at high frequencies, these values need to be taken into account, since they will generate both capacitive and inductive reactance that will affect the value of the resistor at the particular frequency it is going to be used.

• Packaging. This keeps into account where and how the resistor is going to be mounted. It can be a through holes resistor, which is provided with two leads to make the connections. The leads are usually inserted in the holes of a perforated board or of a Printed Circuit Board (PCB). Or, the resistor can be a Surface Mounted one. This has no wires, just two pads that can be directly soldered on a Surface Mounted technology (SMT) PCB. Other factors affecting the packaging include the possibility of attaching it to an external heat sink, and/or the necessity to properly ventilate it, to guarantee enough heat dissipation.

Conductors, Insulators, and Semiconductors

Everybody knows that an electric wire, usually made of copper, is a conductor. And everybody knows that all metals are conductors.

Everybody also knows that plastic is a good electrical insulator, as well as other materials such as glass and rubber.

But how about semiconductors? What are they? And how do we really distinguish among conductors, semiconductors and insulators?

To answer all these question we need to look deeper inside the materials.We know that matter is made of atoms, and atoms are made of protons, neutrons and electrons. Protons and neutrons reside at the center of the atom structure, called the nucleus. Electrons are allocated all around the nucleus, at a long distance from it, relatively to the scale of the nucleus itself.

Electrons have a certain amount of energy, that is always an integral value of a certain amount that is called quantum of energy. Depending on the amount of energy they posses, they are locate closer or farther away from the nucleus. The more energy, the farther they are.

Based on quantum mechanics, which we are not going to talk in details in this context, electrons occupy bands of energy. The farther bands in the atom are the so called Valence Band and Conduction Band.

The valence band contains all those electrons that allow the atoms to stick together and forming molecules by bonding with other atoms of the same or a different substance.

For certain materials, rather than having molecules, the atoms form what is called a crystalline lattice, which is the case we are more interested in this context. It is worth noting that a new theory, highly based on quantum mechanics, is also distinguishing between actual crystalline lattices and material networks. However, for all the scope and purpose of this context, we will make a simplification and name both of them as crystalline lattices.

(This picture, courtesy of Wikipedia)

In certain conditions, electrons in the valence band can jump to a higher level of energy, thus moving in what is called the conduction band. In the conduction band, electrons are no more stuck to their own atoms, but can start moving freely in the lattice that makes up the material. When that happens, we can control their movement by applying an electric field by the means, for example, of a battery. The voltage of the battery, applied to the two ends of the same block of material (for example a wire), produces the electric field inside the material and forces the electrons to move toward the positive electrode of the battery while, in the mean time, the negative electrode of the battery provides electrons to the material, to replace those that have entered the positive electrode of the battery.

Don’t think that electrons move very fast when they do that. Electrons, in fact, move very slowly, but it is the huge amount of them that help creating a measurable current.

Then you would ask: but when I turn the switch on, the light comes out of a lamp instantly. If the electrons move slowly, shouldn’t a lamp emit light only after a while?

Well, yes and no. In fact, the lamp does not light up immediately. It takes a certain amount of time to do that. But that time is so small that for us the event happens instantly.

Also, when you turn the switch on, the electrons closest to the positive electrode move into it almost immediately, not because they are fast, but because they are so close to it. At the same time, new electrons are fed to the material from the negative electrode. So, at the end, all the electrons in the wire start moving simultaneously inside of it, causing the current to start flowing immediately.

But I am digressing. Let’s go back to our primary subject.

We have talked about electrons in the valence band and the possibility they have to jump to the conduction band and, thus, helping creating a current if we apply a voltage.

But how much energy do the electrons need to jump to the conduction band?

Here it comes the definition of conductors, semiconductors and insulators.

In the materials called conductors, the level of energy that the valence electrons need to jump to the conduction band is basically ‘0’. In fact, valence band and conduction band overlap each other and, therefore, some or all the electrons in the valence band are also, already, in the conduction band. This happens mostly with metals, like copper, iron, aluminum, and so forth. Depending on the particular metal, the conduction and valence bands are more or less overlapped. Those material where there is more overlap are those that conduct electricity better. Those material where there is less overlap, are those that are worst to conduct current, although still conductors.

In the materials called insulators, the gap between the valence band and the conduction band is so high that electrons cannot jump from the valence band to the conduction band, and so they cannot generate an electrical current.
Of course, if we apply a voltage high enough, we can still provide them the energy to make the jump. However, in that case, because of the very high voltage, electrons jump from one band to the other in a disruptive way, causing the material to break. Once that happened, the insulator loose its property and it is no good anymore as such.

Finally, in the materials called semiconductors, the valence band and the conduction band are separated, but close together. It is relatively easy for an electron in the valence band to jump to the conduction band if we only heat a little bit the semiconductor, maybe just with our bare hands. The heat provides enough energy to the electrons to jump to the conduction band. However, not many electrons will do so, unless we keep heating the semiconductor. So, at the end, although capable of conducting some current, semiconductors are not good in doing so. Thus the name of their category.

In this article, we have talked about energy bands in materials, and how materials behave based on the position of the two highest energy band levels.

We have said that conductors are those were valence and conduction bands are partially overlapping.

Conversely, insulators are those that have a high gap in between the valence and the conduction bands.

And finally, semiconductors are those somewhat in between. For them, the valence and conduction bands are separated with a gap, but that gap is small enough to allow, under certain conditions, for the electrons to jump from the valence to the conduction band. That’s why they perform poorly both as conductors and insulators. However, we will see later on how semiconductors can be of great advantage for us, as long as they are treated in a certain way. They are those that allow us to build all the wonders of modern electronics.