A Few Words On DC And AC: What Exactly Are They?

A few disorganized concepts about direct and alternate current.

There are two main variations of the electrical current: the Direct Current, or DC, and the Alternate Current, or AC. But what does that mean?

The DC is the one you obtain when you power a device using batteries, for example. Batteries provide what is called Direct Voltage and that generates a Direct Current once applied to an electric circuit. If we draw a diagram of the voltage and, correspondingly, the current that flows in a circuit powered with DC, here is what we obtain:

This diagram basically tells us that the value of the voltage, and of the current, does not change over time. We usually define the current as flowing from the positive to the negative pole of the battery and that flow never changes over time.

The AC works like the DC, going from the positive to the negative voltage. The difference is that the voltage keeps switching: positive becomes negative and then becomes positive again, and so forth. And so the current keeps changing its direction accordingly.

Also, the AC does not change suddenly back and forth, but it does that progressively, following a shape called sine wave. All electrical energy distributed in our homes has this shape.

In USA, the AC current changes direction 120 times per second, which means that in one second there are 60 full periods of the sine wave. We say that the frequency of the current is 60 Hertz, abbreviated 60 Hz.

In Europe, 50 Hz is used instead. Other parts of the world either use one or the other.

The AC voltage is the one created in the power plants and provided, for example, at the wall outlets in your house by the energy service provider.

The voltage at the outlet is not constant as the one in the batteries. Instead, it changes continuously following the shape of a sine wave. Because of that, the polarity at each electrode of the outlet changes over time from positive to negative and vice versa, following the shape of the sine wave.

So, when we connect a device to the electric outlet, the current that will flow through that device will be an AC current as well.

The sinusoidal shape of the AC voltage depends on the way the electricity is generated. In the power plants, there are devices called alternators, a much bigger version of those that you can find inside your car to recharge its battery, or on a bike, to provide electricity to turn on the lights at night.

Depending on the power plant, a different kind of energy is used to put in motion the alternator. It could be fossil fuel or nuclear energy that heat a reservoir of water and create the steam that makes the alternator rotate. Or it could be the rotation of a propeller-like device that is put in motion by the wind.

Whatever is the source of the mechanical energy, the alternator converts that energy in electrical energy. But, since the rotation translates into a sine wave when described on a Cartesian reference system, the resulting electrical energy acquires that shape too.

But, why do we need both forms of voltage, DC and AC?

First of all, DC voltage is necessary to power up any electronic device, from your TV to your smartphone or radio or computer.

AC voltage, from the electrical engineering perspective, is used to transmit the electrical energy from the places where it is created to the places where it is used.

Back to the time where the first experiments of electricity transmission were conducted, there was a famous diatribe between Thomas Edison and Nikola Tesla.

Edison believed that the safest way to transmit electricity was to do that with cables powered with DC current.

Tesla argued that it was better to use AC current because it allowed much less waste of energy during the transportation, thanks to the fact that it is easier to convert the voltage from a low value to a higher one and vice versa, when using AC. And it is also very simple to convert the AC into DC when DC is needed, through a process called rectification.

As history tells us, Tesla won that battle, rightfully. And so, today, AC is used to bring the electrical energy to our homes from the power plants.

Advertisement

Conductors, Insulators, and Semiconductors

cpu-3061923_1280

Everybody knows that an electric wire, usually made of copper, is a conductor. And everybody knows that all metals are conductors.

copper-72062_1280

Everybody also knows that plastic is a good electrical insulator, as well as other materials such as glass and rubber.

insulators-3838730_1280

But how about semiconductors? What are they? And how do we really distinguish among conductors, semiconductors and insulators?

To answer all these question we need to look deeper inside the materials.We know that matter is made of atoms, and atoms are made of protons, neutrons and electrons. Protons and neutrons reside at the center of the atom structure, called the nucleus. Electrons are allocated all around the nucleus, at a long distance from it, relatively to the scale of the nucleus itself.

Electrons have a certain amount of energy, that is always an integral value of a certain amount that is called quantum of energy. Depending on the amount of energy they posses, they are locate closer or farther away from the nucleus. The more energy, the farther they are.

Based on quantum mechanics, which we are not going to talk in details in this context, electrons occupy bands of energy. The farther bands in the atom are the so called Valence Band and Conduction Band.

The valence band contains all those electrons that allow the atoms to stick together and forming molecules by bonding with other atoms of the same or a different substance.

water-40708_1280

For certain materials, rather than having molecules, the atoms form what is called a crystalline lattice, which is the case we are more interested in this context. It is worth noting that a new theory, highly based on quantum mechanics, is also distinguishing between actual crystalline lattices and material networks. However, for all the scope and purpose of this context, we will make a simplification and name both of them as crystalline lattices.

lattice(This picture, courtesy of Wikipedia)

In certain conditions, electrons in the valence band can jump to a higher level of energy, thus moving in what is called the conduction band. In the conduction band, electrons are no more stuck to their own atoms, but can start moving freely in the lattice that makes up the material. When that happens, we can control their movement by applying an electric field by the means, for example, of a battery. The voltage of the battery, applied to the two ends of the same block of material (for example a wire), produces the electric field inside the material and forces the electrons to move toward the positive electrode of the battery while, in the mean time, the negative electrode of the battery provides electrons to the material, to replace those that have entered the positive electrode of the battery.

Don’t think that electrons move very fast when they do that. Electrons, in fact, move very slowly, but it is the huge amount of them that help creating a measurable current.

Then you would ask: but when I turn the switch on, the light comes out of a lamp instantly. If the electrons move slowly, shouldn’t a lamp emit light only after a while?

lamp-18869_1280

Well, yes and no. In fact, the lamp does not light up immediately. It takes a certain amount of time to do that. But that time is so small that for us the event happens instantly.

Also, when you turn the switch on, the electrons closest to the positive electrode move into it almost immediately, not because they are fast, but because they are so close to it. At the same time, new electrons are fed to the material from the negative electrode. So, at the end, all the electrons in the wire start moving simultaneously inside of it, causing the current to start flowing immediately.

But I am digressing. Let’s go back to our primary subject.

We have talked about electrons in the valence band and the possibility they have to jump to the conduction band and, thus, helping creating a current if we apply a voltage.

But how much energy do the electrons need to jump to the conduction band?

Here it comes the definition of conductors, semiconductors and insulators.

conductors_semiconductors_insulators

In the materials called conductors, the level of energy that the valence electrons need to jump to the conduction band is basically ‘0’. In fact, valence band and conduction band overlap each other and, therefore, some or all the electrons in the valence band are also, already, in the conduction band. This happens mostly with metals, like copper, iron, aluminum, and so forth. Depending on the particular metal, the conduction and valence bands are more or less overlapped. Those material where there is more overlap are those that conduct electricity better. Those material where there is less overlap, are those that are worst to conduct current, although still conductors.

In the materials called insulators, the gap between the valence band and the conduction band is so high that electrons cannot jump from the valence band to the conduction band, and so they cannot generate an electrical current.
Of course, if we apply a voltage high enough, we can still provide them the energy to make the jump. However, in that case, because of the very high voltage, electrons jump from one band to the other in a disruptive way, causing the material to break. Once that happened, the insulator loose its property and it is no good anymore as such.

Finally, in the materials called semiconductors, the valence band and the conduction band are separated, but close together. It is relatively easy for an electron in the valence band to jump to the conduction band if we only heat a little bit the semiconductor, maybe just with our bare hands. The heat provides enough energy to the electrons to jump to the conduction band. However, not many electrons will do so, unless we keep heating the semiconductor. So, at the end, although capable of conducting some current, semiconductors are not good in doing so. Thus the name of their category.

In this article, we have talked about energy bands in materials, and how materials behave based on the position of the two highest energy band levels.

We have said that conductors are those were valence and conduction bands are partially overlapping.

Conversely, insulators are those that have a high gap in between the valence and the conduction bands.

And finally, semiconductors are those somewhat in between. For them, the valence and conduction bands are separated with a gap, but that gap is small enough to allow, under certain conditions, for the electrons to jump from the valence to the conduction band. That’s why they perform poorly both as conductors and insulators. However, we will see later on how semiconductors can be of great advantage for us, as long as they are treated in a certain way. They are those that allow us to build all the wonders of modern electronics.

Electric Current The Easy Way

Electric Current The Easy Way: a very simple and qualitative approach to understanding what electric current is and how it flows.

Watching a number of YouTube videos, I realized there is some misconception regarding the electric current and how it flows. Some people don’t understand what the current is made of and whether it flows from positive to negative or vice versa.

So here I am, trying to shedding some light to clear the obscurity on this subject.

This post approaches the subject in a very basic qualitative way. No formulas and no calculations are involved.

Here it is!

From the Webster Dictionary

Current:
A flowing or passing; onward motion. Hence: A body of
fluid moving continuously in a certain direction; a
stream; esp., the swiftest part of it; as, a current of
water or of air; that which resembles a stream in motion;
as, a current of electricity.

So, current is the flow of something, some kind of material thing like the molecules of water in a river.

fresh river_400

But, what is the material that makes the electric current?

Electric current is made of electric charges. These charges have the ability of moving in a medium like, for example, an electric wire. Like the water in a river, charges have to move from a higher level to a lower level of potential energy.

charges_in_wire

For a river, the higher level of potential energy is the higher ground, and so the water flows from a higher ground to a lower ground, from a mountain or a hill toward the valley below or the sea, or the ocean.

Similarly, for an electric current, charges have to move from a higher ground of electric potential energy to a lower ground.

The problem with the electric current is that different kind of charges can make it, depending on the medium, and depending on the kind of charges. So, the definition of higher ground may change.

This seems utterly complicated, and it is. Think if we had to consider the kind of medium and/or the kind of charge every time we need to describe what happens with a current.

So, since we don’t like complications, we make some simplification. We always define a higher ground as a positive electric potential energy level, and we always say that the current flows from the positive potential energy level to the negative.

positive_charges

Hum… Positive? Negative?

Well, yes, because charges can only be positive or negative. Think at the electrons and the protons in the atoms. Those are the basic charges and they are negative for the electrons and positive for the protons.

protons_and_electrons

Wait, what we just said? Electrons are charged negatively and protons positively? How do we know that?

We don’t!

Positive and negative are just made up names that we use because it is convenient to do so.

We could have as well said that electrons are positively charged and protons are negatively charged. But, historically, we have defined the polarity of the charges in a certain way and therefore we continue to do so, because we don’t like changes, and we like concepts to be simple.

So, here we are, saying that an electric current is made of charges. That the charges can be positive or negative. That positive charges like to go from their kind of higher ground, a positive electric potential level, to a lower ground, which is a lower positive electric potential level that we call negative, to distinguish from the other one. And, finally, we say that negative charges like to go from their kind of higher ground, the negative electric potential level, to their kind of lower ground, which now we understand we can call positive electric potential level.

Hum, it seems too much, isn’t it?

And yes, it is: too complicated to use it in every day conversations.

Simplification? Sure, let’s do that. Let’s say that whenever an electric current is involved, we will always say that it is made up of positive charges, and that positive charges always go from positive to negative electric potential level. How’s that? Simple enough?

Now doesn’t matter the medium being an electric wire, were the current is made up of electrons moving through it, or the acid solution in a car battery, where the electric current is made of ions, of both positive and negative kinds, creating two different currents flowing simultaneously in opposite directions.

solution

 

Lesson learned: we like to make things simple. We define the electric current as the flow of positive electric charges in a medium, whatever it is, going from the positive potential level to the negative.

circuit

And that’s it. That’s enough for us. With this definition we can address problems involving electric currents always the same way, without worrying what is really happening behind the scenes. This is a very important concept. All about electrical engineering is based on this definition of current. Well… at least part of it.

%d bloggers like this: